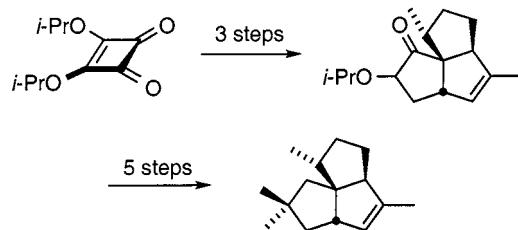


A Highly Abbreviated Synthesis of Pentalenene by Means of the Squarate Ester Cascade


Leo A. Paquette* and Feng Geng

Evans Chemical Laboratories, The Ohio State University, Columbus, Ohio 43210

paquette.1@osu.edu

Received October 14, 2002

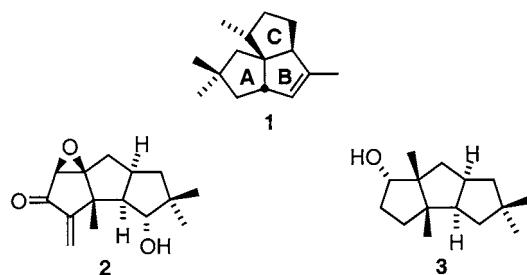
ABSTRACT

The sequential addition of 5-methylcyclopentyllithium and propynyllithium to diisopropyl squarate results in the efficient formation of a functionalized angular trquinane having two of its five-membered rings substituted precisely as in the target sesquiterpene. Only seven additional steps are then required to access pentalenene.

Pentalenene (**1**), whose isolation from *Streptomyces griseochromogenes* was reported by Seto and Yonehara in 1980,¹ is the parent hydrocarbon of the pentalenone antibiotic family of fungal metabolites. The unusual tricyclo[6.3.0.0^{4,8}]undecane structural motif common to **1** and its oxygenated congeners has elicited considerable synthetic² and biosyn-

thetic interest.³ Since the first de novo approach to pentalenene reported by our group in 1982,⁴ almost 30 total^{5–19} and formal syntheses^{20–26} of **1** have been defined. Some of the more effective means for accessing this sesquiterpenoid

(1) Seto, H.; Yonehara, H. *J. Antibiot.* **1980**, *33*, 92.
 (2) Reviews: (a) Mehta, G.; Srikrishna, A. *Chem. Rev.* **1997**, *97*, 671.
 (b) Paquette, L. A.; Doherty, A. M. *Polyquinane Chemistry*; Springer-Verlag: New York, 1987. (c) Paquette, L. A. *Top. Curr. Chem.* **1984**, *119*, 1. (d) Paquette, L. A. *Top. Curr. Chem.* **1979**, *79*, 41.


(3) (a) Seemann, M.; Zhai, G.; Umezawa, K.; Cane, D. E. *J. Am. Chem. Soc.* **1999**, *121*, 591. (b) Lesburg, C. A.; Zhai, G.; Cane, D. E.; Christianson, D. W. *Science* **1997**, *277*, 1820. (c) Cane, D. E.; Weiner, S. W. *Can. J. Chem.* **1994**, *72*, 118. (d) Cane, D. E.; Sohng, J. K.; Lamberson, C. R.; Rudnicki, S. M.; Wu, Z.; Lloyd, M. D.; Oliver, J. S.; Hubbard, B. R. *Biochemistry* **1994**, *33*, 5846. (e) Cane, D. E.; Oliver, J. S.; Harrison, P. H. M.; Abell, C.; Hubbard, B. R.; Kane, C. T.; Lattman, R. *J. Am. Chem. Soc.* **1990**, *112*, 4513. (f) Harrison, P. H. M.; Oliver, J. S.; Cane, D. E. *J. Am. Chem. Soc.* **1988**, *110*, 5922. (g) Cane, D. E.; Abell, C.; Lattman, R.; Kane, C. T.; Hubbard, B. R.; Harrison, P. H. M. *J. Am. Chem. Soc.* **1988**, *110*, 4081.

(4) (a) Annis, G. D.; Paquette, L. A. *J. Am. Chem. Soc.* **1982**, *104*, 4504.
 (b) Paquette, L. A.; Annis, G. D. *J. Am. Chem. Soc.* **1983**, *105*, 7358.
 (5) (a) Pattenden, G.; Teague, S. J. *Tetrahedron Lett.* **1984**, *25*, 3021.
 (b) Pattenden, G.; Teague, S. J. *Tetrahedron* **1987**, *43*, 5637.
 (6) (a) Piers, E.; Karunaratne, V. *J. Chem. Soc., Chem. Commun.* **1984**, 959. (b) Piers, E.; Karunaratne, V. *Can. J. Chem.* **1989**, *67*, 160.
 (7) Crimmins, M. T.; DeLoach, J. A. *J. Am. Chem. Soc.* **1986**, *108*, 800.

(8) (a) Mehta, G.; Rao, K. S. *J. Chem. Soc., Chem. Commun.* **1985**, 1464.
 (b) Mehta, G.; Rao, K. S. *J. Am. Chem. Soc.* **1986**, *108*, 8015.
 (9) Hua, D. H. *J. Am. Chem. Soc.* **1986**, *108*, 3835.
 (10) (a) Imanishi, T.; Ninbari, F.; Yamashita, M.; Iwata, C. *Chem. Pharm. Bull.* **1986**, *34*, 2268. (b) Imanishi, T.; Yamashita, M.; Ninbari, F.; Tanaka, T.; Iwata, C. *Chem. Pharm. Bull.* **1988**, *36*, 1371. (c) Imanishi, T.; Yamashita, M.; Hirokawa, Y.; Tanaka, T.; Iwata, C. *Chem. Pharm. Bull.* **1990**, *38*, 1124.
 (11) (a) Hudlicky, T.; Natchus, M. G.; Sinai-Zingde, G. *J. Org. Chem.* **1987**, *52*, 4641. (b) Hudlicky, T.; Sinai-Zingde, G.; Natchus, M. G.; Ranu, B. C.; Papadopolous, P. *Tetrahedron* **1987**, *43*, 5685.
 (12) (a) Schore, N. E.; Rowley, E. G. *J. Am. Chem. Soc.* **1988**, *110*, 5224. (b) Rowley, E. G.; Schore, N. E. *J. Org. Chem.* **1992**, *57*, 6853.
 (13) Ihara, M.; Katogi, M.; Fukumoto, K.; Kametani, T. *J. Chem. Soc., Perkin Trans. 1* **1988**, 2963.
 (14) Shizuri, Y.; Maki, S.; Ohkubo, M.; Yamamura, S. *Tetrahedron Lett.* **1990**, *31*, 7167.
 (15) (a) Wu, Y. J.; Burnell, D. J. *J. Chem. Soc., Chem. Commun.* **1991**, 764. (b) Wu, Y. J.; Zhu, Y.-Y.; Burnell, D. J. *J. Org. Chem.* **1994**, *59*, 104.
 (16) (a) Franck-Neumann, M.; Miesch, M.; Gross, L. *Tetrahedron Lett.* **1992**, *33*, 3879. (b) Miesch, M.; Gross, L.; Franck-Neumann, M. *Tetrahedron* **1997**, *53*, 2111.
 (17) Hatanaka, M.; Ueno, F.; Ueda, I. *Tetrahedron Lett.* **1996**, *37*, 89.
 (18) Kim, S.; Cheong, J. H.; Yoo, J. *Synlett* **1998**, 981.
 (19) Harrington-Frost, N. M.; Pattenden, G. *Tetrahedron Lett.* **2000**, *41*, 403.

include thermal and photochemical cycloadditions,^{4,7,11,17} transannular cyclizations,^{5,8} tandem radical-mediated ring closures,^{18,19} metal-catalyzed transformations (Zr,²⁶ Co,¹² Fe,²² Ni²⁵), and the use of cyclopropane and cyclobutane intermediates.^{6,10,16}

In making use of the extensive bond reorganization that accompanies the so-called “squarate ester cascade”,²⁷ we previously found it possible to apply this deep-seated rearrangement to the expeditious synthesis of the naturally occurring linear trquinanes hypnophilin (**2**),^{28,29} coriolin,²⁹ and ceratopicanol (**3**).²⁹ Presently, we describe the first successful undertaking that transforms diisopropyl squarate (**4**)³⁰ in an equally convenient and concise manner into the alternative angularly fused architecture, as is present, for example, in **1**.

The pentalenene framework features a bridged spirane arrangement of three cyclopentane rings. To arrive at this carbocyclic skeleton from the direction of **4**, it becomes necessary to achieve regioselective protonation within a strained 1,2,4,6-cyclooctatetraene intermediate such as **8**. To this end, we found it productive to treat **4** first with 5-methylcyclopentenyllithium and then propynyllithium (Scheme 1). Under these circumstances, trans addition likely predominates to furnish **5** as the principal bis-adduct.³¹ The doubly charged nature of **5** and the strong donor character of the two oxido anions combine to promote outward conrotatory movement of the oxygen atoms during opening of the cyclobutene ring.³²

Equilibration between the two helical dienolates **6** and **7** so formed was anticipated to be facile.³³ Participation of the

(20) Jurlina, J. L.; Patel, H. A.; Stothers, J. B. *Can. J. Chem.* **1984**, 62, 1159.

(21) Baker, R.; Keen, R. B. *J. Organomet. Chem.* **1985**, 285, 419.

(22) (a) Zhao, S.; Mehta, G.; Helquist, P. *Tetrahedron Lett.* **1991**, 32, 5753. (b) Ishii, S.; Zhao, S.; Mehta, G.; Knors, C. J.; Helquist, P. *J. Org. Chem.* **2001**, 66, 3449.

(23) Lange, G. L.; Gottardo, C. *J. Org. Chem.* **1995**, 60, 2183.

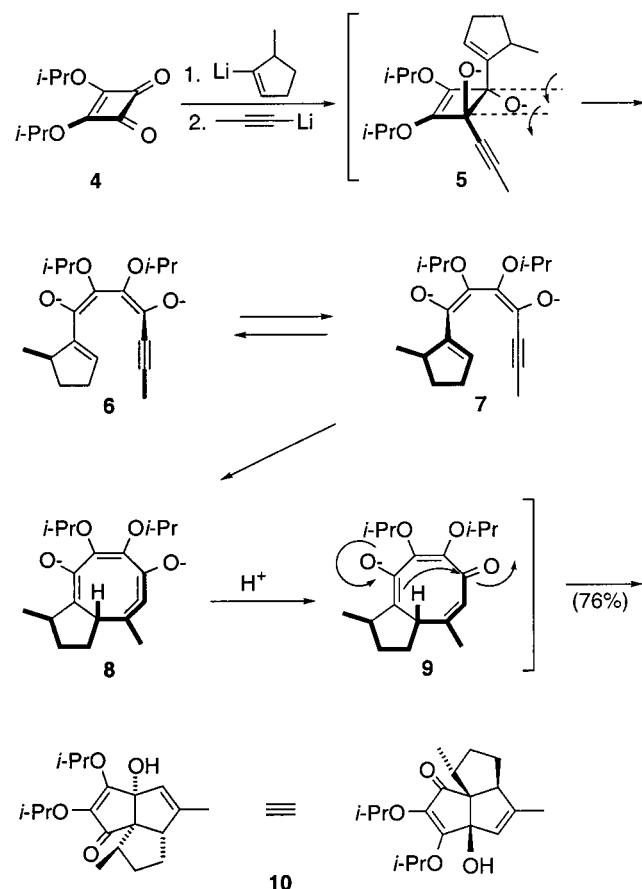
(24) Zhu, Y.-Y.; Burnell, D. J. *Tetrahedron: Asymmetry* **1996**, 7, 3295.

(25) Seo, J.; Fain, H.; Blanc, J.-B.; Montgomery, J. *J. Org. Chem.* **1999**, 64, 6060.

(26) Agnel, G.; Negishi, E. *J. Am. Chem. Soc.* **1991**, 113, 7424.

(27) Review: Paquette, L. A. *Eur. J. Org. Chem.* **1998**, 1709.

(28) Geng, F.; Liu, J.; Paquette, L. A. *Org. Lett.* **2002**, 4, 71.


(29) Paquette, L. A.; Geng, F. *J. Am. Chem. Soc.* **2002**, 124, 9199.

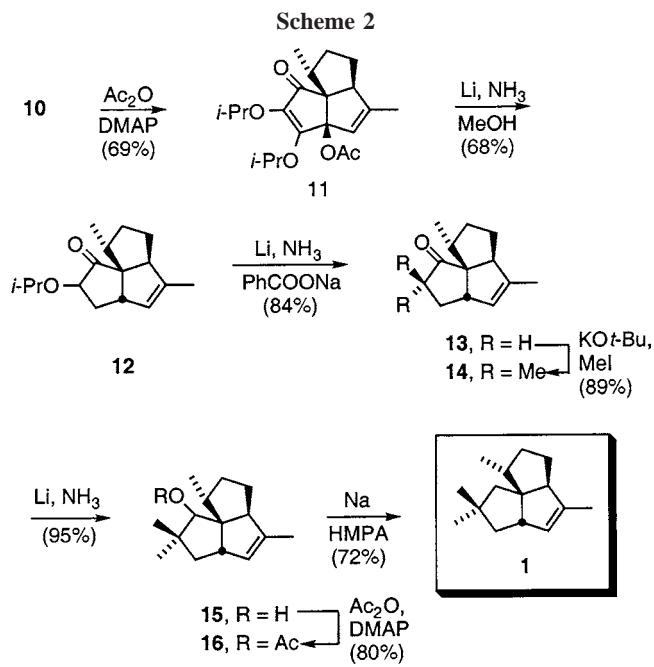
(30) Liu, H.; Tomooka, C. S.; Moore, H. W. *Synth. Commun.* **1997**, 27, 2177.

(31) Diastereoselective cis addition would also give rise to **8** via dianionic oxy-Cope rearrangement.

(32) (a) Kirmse, W.; Rondan, N. G.; Houk, K. N. *J. Am. Chem. Soc.* **1984**, 106, 7989. (b) Rondan, N. G.; Houk, K. N. *J. Am. Chem. Soc.* **1985**, 107, 2099. (c) Niwayama, S.; Kallel, E. A.; Spellmeyer, D. C.; Sheu, C.; Houk, K. N. *J. Org. Chem.* **1996**, 61, 2813. (d) Dolbier, W. R., Jr.; Koroniak, H.; Kouk, K. N.; Sheu, C. *Acc. Chem. Res.* **1996**, 29, 471.

Scheme 1

constituent triple bond in the second (now 8π conrotatory) electrocyclization proceeds more slowly and delivers the strained intermediate **8**.³⁴ Beyond that, the presence of a methyl group on the cyclopentene subunit should sufficiently impede the rate of ring closure in **6** because of its placement on the interior of the coil in this case.³⁵ Comparable kinetic retardation should not accompany the conversion of **7** to **8**, thereby resulting in good overall stereochemical control at this stage. At the experimental level, **10** was isolated in 76% yield following acidification and transannular aldolization (see **9**). We note specifically that the stereoselectivity and steric constraints operational while proceeding from **6** to **10** result in the direct, one-pot assembly of a tricycloundecane product having rings B and C of the target pentalenene structure completely elaborated.


The chemical modification of ring A began by activation of the hydroxyl group in **10** as the acetate (Scheme 2). When

(33) (a) Paquette, L. A.; Doyon, J.; Kuo, L. H. *Tetrahedron Lett.* **1996**, 37, 3299. (b) Paquette, L. A.; Hamme, A. T., II; Kuo, L. H.; Doyon, J.; Kreuzholz, R. *J. Am. Chem. Soc.* **1997**, 119, 1242.

(34) (a) Morwick, T.; Doyon, J.; Paquette, L. A. *Tetrahedron Lett.* **1995**, 36, 2369. (b) Paquette, L. A.; Morwick, T. M. *J. Am. Chem. Soc.* **1997**, 119, 1230.

(35) Carefully executed experiments and quantitation of chromatographic fractions following workup have shown **10** to dominate over its diastereomer (formed analogously from **6**) by a ratio of 8.8:1. Since racemic 5-methylcyclopentenyllithium was employed in this study and the other reagents are achiral, the enantiomeric representations of **6–10** are also involved.

Scheme 2

11 was reduced with approximately 50 mol equiv of lithium metal in liquid ammonia at -78°C and excess methanol was slowly added over 1 h, the transfer of six electrons was made possible and **12** was formed in 68% yield.³⁶ Although conditions for cleavage of the second isopropoxy substituent in this step were not found, the independent dissolving metal reduction of **12** did lead efficiently to ketone **13**. Sodium benzoate was invariably introduced prior to workup for the purpose of quenching the excess lithium reagent, thus

(36) Although a single isomer of **12** was produced in this manner, the relative orientation of its isopropoxy group was not definitively established, although it is expected that it is on the β -face.

guarding against possible overreduction. With rapid arrival at **13**, it was now possible to undertake the α,α -dimethylation of its enolate anion. This transformation was best achieved with potassium *tert*-butoxide and methyl iodide in that contamination involving the difficultly separable monomethyl derivative was not seen.

The doubly neopentyllic nature of the carbonyl group in **14** brought an assortment of challenges to the fore. For example, no reaction was observed whenever nucleophilic attack at the sp^2 -hybridized carbon was a matter of consideration. Two such processes include attempted Wolff–Kishner and $\text{LiAlH}_4/\text{THF}$ reduction at elevated temperature. In contrast, dissolving metal reduction was well suited to the task, providing alcohol **15** in near-quantitative yield. Once its derived acetate **16** was reached, recourse to C–O bond cleavage with sodium metal in HMPA³⁷ gave pentalenene (**1**), which was spectroscopically identical to an authentic sample.³⁸

The use of the squarate ester cascade as a device for rapid assembly of a naturally occurring angular triquinane has thus been demonstrated. The hydrocarbon nature of the target also provided a forum for evaluating the power of dissolving metal reduction. Three distinctively different transformations involving Li/NH_3 can be identified at various stages of the synthesis, this routing making possible an economic eight-step sequence to arrive at **1** from **4**.

Acknowledgment. Financial support was provided by the National Science Foundation whom we thank.

Supporting Information Available: Experimental details and characterization data for all compounds. This material is available free of charge via the Internet at <http://pubs.acs.org>. OL020208K

(37) Deshayes, H.; Pete, J.-P. *J. Chem. Soc., Chem. Commun.* **1978**, 567.

(38) All compounds are considered to be of $>97\%$ purity on the basis of NMR and TLC analyses.